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Plasma properties: Density and Temperature.

1 review : thermodynamics

Let us starting with a review of some important thermodynamical principles.

1.1 First law of thermodynamics

The First Law of Thermodynamics states that the change of the internal energy U is
given by the sum of the work δW and heat δQ exchanged with the environment:

dU = δW + δQ (1)

Note the use of δ instead of d. This indicates that the amount of exchanged heat

U is an extensive state func-
tion and a thermodynamical
potential

and work does depend on how the thermodynamical process is performed, and thus,
δW and δQ are not exact differentials. In contrast, the change of the interior energy
depends only on the initial and final state and is therefore an exact differential.

1.2 Second law of thermodynamics

The Second Law of Thermodynamics is closely related to the entropy, which is defined
as the reversibly exchanged heat at constant temperature T

dS =
δQ
T

. (2)

The second law says now that for a closed system at equilibrium the entropy does not

S is an extensive state func-
tion, while T is an intensive
state function
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change, i.e.
dS = 0. (3)

At a given temperature the amount of irreversibly exchanged heat is always smaller
than the amount of reversibly exchanged heat, and thus

δQirr < δQrev = T dS. (4)

For a closed system at equilibrium the entropy takes its maximum value Smax, while
for an irreversible process dS > 0.

1.3 Ideal gas

In an ideal gas the particles are assumed to undergo only elastic collisions. In this case
the equation of state is

pV = NkBT, (5)

where p, V , and N are the pressure, volume, and particle number of the gas. The
Boltzmann constant kB

kB = 1.308 ·10−23J/K= 8.617 ·10−5eV. (6)

relates the average kinetic energy of the gas with the temperature. For an ideal gas the
average (translational) energy is

1
2

m〈 v2 〉= 3
2
kBT. (7)

2 density

SOLID As an example let us consider aluminum which has a density of ρAl =

3 ·103kg/m3 and an atomic mass of mAl = 27u. We now want to find the number of
u = 1.66 · 10−27kg is the
atomic mass unit.

aluminum atoms per unit volume:

nAl =
ρAl

mAlu
=

3 ·103kg/m3

27 ·1.66 ·10−27kg
= 6.8 ·1028m−3. (8)

AIR At standard pressure one mol of air has a volume of 22.4l = 22.4 · 10−3m3.
One mol are 6 ·1023 particles, and thus

nair =
6 ·1023

22.4 ·10−3m3 = 2.7 ·1025m−3. (9)
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n[m−3] kT [eV]

Solar wind @ Earth 5 50
ionosphere 105−106 0.02
Solar corona 106 100
tokamak 1014 104

laser-produced 1020 100
glow discharge 108−1010 2

3 temperature

Let us have a closer look at the velocity distribution f (v) of a gas and how it relates to
its temperature. Because the gas motion is isotropic, f (v) can only be a function of v2.
On the other hand, the components of f (v) must be independent, which implies that

f (v2) = f (v2
x + v2

y + v2
z ) = f (v2

x) f (v2
y) f (v2

z ). (10)

The only function that fulfills Eq. (10) is

f (v2) = c · eav2
. (11)

To find the constant c we require that the components of f are normalized, i.e.∫
fi(vi)dv = 1, which is only possible if a < 0, and

1 = c
∫

e−av2
dv = c

√
π

a
. (12)

To obtain the constant a we use that in a gas at equilibrium the energy per degree of
freedom is 1

2kBT , and therefore

kBT = m〈 v2
i 〉= m

∫
v2

i f (vi)d vi = m
√

π

a

∫
exp
{
−av2

i
}

v2
i d vi. (13)

Replacing the argument of the exponential by x = av2
i we get

dvi =
1

2
√

a
dx√

x

kBT =
m√
πa

∞∫
0

e−x√xdx =
m√
πa

Γ (
3
2
), (14)
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where the Gamma function Γ (x) is defined as

Γ (z) =
∞∫

0

e−xxz−1dx (15)

Γ (z+1) = Γ (z) · z (16)

Γ (1) = 1 (17)

Γ (
1
2
) =
√
π. (18)

From this follows that Γ (3/2) =
√
π

2 and

f (v) =
√

m
2πkBT

exp
{
− mv2

2kBT

}

f (v) =
{

m
2πkBT

}3/2

exp
{
− mv2

2kBT

}
.

4 debye shielding

We now consider a negative test charge Q immersed in a homogeneous plasma. Q will
attract ions but repell electrons. The displacement of electrons produces a polarization
charge, which shields the plasma from the test charge. The theory of shielding has
been developed first in 1923 by Peter Debye and Erich Hückel for dielectric fluids.

To derive the shielding potential φ for the charge Q we assume a homogeneous
plasma with electrons of temperature Te and density ne and a fixed background of ions
of density n0. After the test charge has established equilibrium with the plasma its
potential is given by the Poisson equation

electrons: q =−e

∇
2φ(r) =− ρ

ε0
=− e

ε0
(n0−ne(r)) with φ(∞) = 0. (19)

In an electrostatic field the velocity distribution of the electrons is

fe(v) = n0

{
m

2πkBT

}3/2

exp

{
−

1
2 mv2 +qφ(r)

kBT

}
.

The knowledge of fe(v) allows us to find the local electron number density ne(r)

ne(r) =
∫
R

fe(v)dv = n0 exp
{

eφ(r)
kBT

}
,

which we substitute into Eq. (19)

∇
2φ=− e

ε0
n0

(
1− exp

{
eφ
kBT

})
.
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We expand the exponential term into a Taylor series to linearize the quation for φ

exp
{

eφ
kBT

}
= 1+

eφ
kBT

+
1
2

(
eφ
kBT

)2

+
1
3!

(
eφ
kBT

)3

+ · · ·

and keep only the first two terms

∇
2φ ≈ n0

ε0

e2φ

kBT
.

Because the plasma is isotropic we now want to make use of the spherical symmetry
of the problem. To this aim we express the Laplace operator in spherical coordinates

∇
2φ=

1
r2 ∂r

(
r2

∂rφ
)
+

1
r2 sinθ

∂θ (sinθ∂θφ)+
1

r2 sin2 θ
∂

2
φφ

and drop the symmetric angular terms

∇
2φ=

1
r2 ∂r

(
r2

∂rφ
)
=

n0

ε0

e2φ

kBT
.

This leads to an ordinary second order linear differential equation

1
r2 ∂r

(
r2

∂rφ
)
− n0

ε0

e2φ

kBT
= 0

1
r

∂
2
r (rφ)−

n0

ε0

e2φ

kBT
= 0

∂
2
r (rφ)−

n0

ε0

e2φ

kBT
(rφ) = y′′− n0

ε0

e2φ

kBT
y = 0 with y = (rφ) .

The solutions of y′′+a2y = 0 have the general form

y(x) =
c
x

exp(±ax) ,

from which follows that

φ(r) =
A
r

exp
(
− r
λD

)
with

λ2
D =

ε0kBTe

n0e2 (20)

being the Debye length. The value for the constant A can be found by using the fact
that at large distances φ(r) must asymptotically approach Coulomb’s law and we yield
the so-called Debye-Hückel potential

φ(r) =
Q

4πε0

1
r

exp
(
− r
λD

)
(21)
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Figure 1: Comparison between the Debye-Hückel potential (orange) of a charge
immersed in a plasma and the Coulomb potential (blue) of a free charge.

(Fig. 1). A useful relation for the Debye length is

λD = 7430m

√
T
eV

m−3

n
. (22)
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