PHYS5010 - PLASMA PHYSICS

LECTURE 2 - PLASMA PROPERTIES: DENSITY, TEMPERATURE, AND DEBYE LENGTH

Sascha Kempf*
G135, University of Colorado, Boulder

Spring 2023

Plasma properties: Density and Temperature.

1 REVIEW: THERMODYNAMICS

Let us starting with a review of some important thermodynamical principles.

1.1 First law of thermodynamics

The First Law of Thermodynamics states that the change of the internal energy U is given by the sum of the work δW and heat δQ exchanged with the environment:

$$
\begin{equation*}
d U=\delta W+\delta Q \tag{1}
\end{equation*}
$$

U is an extensive state function and a thermodynamical potential

Note the use of δ instead of d. This indicates that the amount of exchanged heat and work does depend on how the thermodynamical process is performed, and thus, δW and δQ are not exact differentials. In contrast, the change of the interior energy depends only on the initial and final state and is therefore an exact differential.

1.2 Second law of thermodynamics

The Second Law of Thermodynamics is closely related to the entropy, which is defined as the reversibly exchanged heat at constant temperature T

$$
\begin{equation*}
d S=\frac{\delta Q}{T} \tag{2}
\end{equation*}
$$

S is an extensive state function, while T is an intensive state function

The second law says now that for a closed system at equilibrium the entropy does not

[^0]change, i.e.
\[

$$
\begin{equation*}
d S=0 . \tag{3}
\end{equation*}
$$

\]

At a given temperature the amount of irreversibly exchanged heat is always smaller than the amount of reversibly exchanged heat, and thus

$$
\begin{equation*}
\delta Q_{i r r}<\delta Q_{r e v}=T d S \tag{4}
\end{equation*}
$$

For a closed system at equilibrium the entropy takes its maximum value $S_{\max }$, while for an irreversible process $d S>0$.

1.3 Ideal gas

In an ideal gas the particles are assumed to undergo only elastic collisions. In this case the equation of state is

$$
\begin{equation*}
p V=N \mathrm{k}_{\mathrm{B}} T \tag{5}
\end{equation*}
$$

where p, V, and N are the pressure, volume, and particle number of the gas. The Boltzmann constant k_{B}

$$
\begin{equation*}
\mathrm{k}_{\mathrm{B}}=1.308 \cdot 10-23 \mathrm{~J} / \mathrm{K}=8.617 \cdot 10^{-5} \mathrm{eV} \tag{6}
\end{equation*}
$$

relates the average kinetic energy of the gas with the temperature. For an ideal gas the average (translational) energy is

$$
\begin{equation*}
\frac{1}{2} m\left\langle v^{2}\right\rangle=\frac{3}{2} \mathrm{k}_{\mathrm{B}} T . \tag{7}
\end{equation*}
$$

2 DENSITY

$u=1.66 \cdot 10^{-27} \mathrm{~kg}$ is the atomic mass unit.

SOLID As an example let us consider aluminum which has a density of $\rho_{A l}=$ $3 \cdot 10^{3} \mathrm{~kg} / \mathrm{m}^{3}$ and an atomic mass of $m_{A l}=27 \mathrm{u}$. We now want to find the number of aluminum atoms per unit volume:

$$
\begin{equation*}
n_{A l}=\frac{\rho_{A l}}{m_{A l} u}=\frac{3 \cdot 10^{3} \mathrm{~kg} / \mathrm{m}^{3}}{27 \cdot 1.66 \cdot 10^{-27} \mathrm{~kg}}=6.8 \cdot 10^{28} \mathrm{~m}^{-3} . \tag{8}
\end{equation*}
$$

AIR At standard pressure one mol of air has a volume of $22.41=22.4 \cdot 10^{-3} \mathrm{~m}^{3}$. One mol are $6 \cdot 10^{23}$ particles, and thus

$$
\begin{equation*}
n_{\text {air }}=\frac{6 \cdot 10^{23}}{22.4 \cdot 10^{-3} \mathrm{~m}^{3}}=2.7 \cdot 10^{25} \mathrm{~m}^{-3} \tag{9}
\end{equation*}
$$

	$n\left[\mathrm{~m}^{-3}\right]$	$\mathrm{kT}[\mathrm{eV}]$
Solar wind @ Earth	5	50
ionosphere	$10^{5}-10^{6}$	0.02
Solar corona	10^{6}	100
tokamak	10^{14}	10^{4}
laser-produced	10^{20}	100
glow discharge	$10^{8}-10^{10}$	2

3 TEMPERATURE

Let us have a closer look at the velocity distribution $f(\mathbf{v})$ of a gas and how it relates to its temperature. Because the gas motion is isotropic, $f(\mathbf{v})$ can only be a function of \mathbf{v}^{2}. On the other hand, the components of $f(\mathbf{v})$ must be independent, which implies that

$$
\begin{equation*}
f\left(\mathbf{v}^{2}\right)=f\left(v_{x}^{2}+v_{y}^{2}+v_{z}^{2}\right)=f\left(v_{x}^{2}\right) f\left(v_{y}^{2}\right) f\left(v_{z}^{2}\right) \tag{10}
\end{equation*}
$$

The only function that fulfills Eq. (10) is

$$
\begin{equation*}
f\left(\mathbf{v}^{2}\right)=c \cdot e^{a \mathbf{v}^{2}} \tag{11}
\end{equation*}
$$

To find the constant c we require that the components of f are normalized, i.e. $\int f_{i}\left(v_{i}\right) d v=1$, which is only possible if $a<0$, and

$$
\begin{equation*}
1=c \int e^{-a v^{2}} d v=c \sqrt{\frac{\pi}{a}} \tag{12}
\end{equation*}
$$

To obtain the constant a we use that in a gas at equilibrium the energy per degree of freedom is $\frac{1}{2} \mathrm{k}_{\mathrm{B}} T$, and therefore

$$
\begin{equation*}
\mathrm{k}_{\mathrm{B}} T=m\left\langle v_{i}^{2}\right\rangle=m \int v_{i}^{2} f\left(v_{i}\right) d v_{i}=m \sqrt{\frac{\pi}{a}} \int \exp \left\{-a v_{i}^{2}\right\} v_{i}^{2} d v_{i} \tag{13}
\end{equation*}
$$

Replacing the argument of the exponential by $x=a v_{i}^{2}$ we get
$d v_{i}=\frac{1}{2 \sqrt{a}} \frac{d x}{\sqrt{x}}$

$$
\begin{equation*}
\mathrm{k}_{\mathrm{B}} T=\frac{m}{\sqrt{\pi} a} \int_{0}^{\infty} e^{-x} \sqrt{x} d x=\frac{m}{\sqrt{\pi} a} \Gamma\left(\frac{3}{2}\right) \tag{14}
\end{equation*}
$$

where the Gamma function $\Gamma(x)$ is defined as

$$
\begin{align*}
\Gamma(z) & =\int_{0}^{\infty} e^{-x} x^{z-1} d x \tag{15}\\
\Gamma(z+1) & =\Gamma(z) \cdot z \tag{16}\\
\Gamma(1) & =1 \tag{17}\\
\Gamma\left(\frac{1}{2}\right) & =\sqrt{\pi} . \tag{18}
\end{align*}
$$

From this follows that $\Gamma(3 / 2)=\frac{\sqrt{\pi}}{2}$ and

$$
\begin{aligned}
& f(v)=\sqrt{\frac{m}{2 \pi \mathrm{k}_{\mathrm{B}} T}} \exp \left\{-\frac{m v^{2}}{2 \mathrm{k}_{\mathrm{B}} T}\right\} \\
& f(\mathbf{v})=\left\{\frac{m}{2 \pi \mathrm{k}_{\mathrm{B}} T}\right\}^{3 / 2} \exp \left\{-\frac{m \mathbf{v}^{2}}{2 \mathrm{k}_{\mathrm{B}} T}\right\} .
\end{aligned}
$$

4 DEBYE SHIELDING

We now consider a negative test charge Q immersed in a homogeneous plasma. Q will attract ions but repell electrons. The displacement of electrons produces a polarization charge, which shields the plasma from the test charge. The theory of shielding has been developed first in 1923 by Peter Debye and Erich Hückel for dielectric fluids.

To derive the shielding potential ϕ for the charge Q we assume a homogeneous plasma with electrons of temperature T_{e} and density n_{e} and a fixed background of ions of density n_{0}. After the test charge has established equilibrium with the plasma its potential is given by the Poisson equation

$$
\begin{equation*}
\nabla^{2} \phi(r)=-\frac{\rho}{\epsilon_{0}}=-\frac{e}{\epsilon_{0}}\left(n_{0}-n_{e}(r)\right) \text { with } \phi(\infty)=0 \tag{19}
\end{equation*}
$$

In an electrostatic field the velocity distribution of the electrons is

$$
f_{e}(\mathbf{v})=n_{0}\left\{\frac{m}{2 \pi \mathrm{k}_{\mathrm{B}} T}\right\}^{3 / 2} \exp \left\{-\frac{\frac{1}{2} m \mathbf{v}^{2}+q \phi(r)}{\mathrm{k}_{\mathrm{B}} T}\right\} .
$$

The knowledge of $f_{e}(\mathbf{v})$ allows us to find the local electron number density $n_{e}(r)$

$$
n_{e}(r)=\int_{\mathbb{R}} f_{e}(\mathbf{v}) \mathrm{d} \mathbf{v}=n_{0} \exp \left\{\frac{e \phi(r)}{\mathrm{k}_{\mathrm{B}} T}\right\}
$$

which we substitute into Eq. (19)

$$
\nabla^{2} \phi=-\frac{e}{\epsilon_{0}} n_{0}\left(1-\exp \left\{\frac{e \phi}{\mathrm{k}_{\mathrm{B}} T}\right\}\right)
$$

We expand the exponential term into a Taylor series to linearize the quation for ϕ

$$
\exp \left\{\frac{e \phi}{\mathrm{k}_{\mathrm{B}} T}\right\}=1+\frac{e \phi}{\mathrm{k}_{\mathrm{B}} T}+\frac{1}{2}\left(\frac{e \phi}{\mathrm{k}_{\mathrm{B}} T}\right)^{2}+\frac{1}{3!}\left(\frac{e \phi}{\mathrm{k}_{\mathrm{B}} T}\right)^{3}+\cdots
$$

and keep only the first two terms

$$
\nabla^{2} \phi \approx \frac{n_{0}}{\epsilon_{0}} \frac{e^{2} \phi}{\mathrm{k}_{\mathrm{B}} T} .
$$

Because the plasma is isotropic we now want to make use of the spherical symmetry of the problem. To this aim we express the Laplace operator in spherical coordinates

$$
\nabla^{2} \phi=\frac{1}{r^{2}} \partial_{r}\left(r^{2} \partial_{r} \phi\right)+\frac{1}{r^{2} \sin \theta} \partial_{\theta}\left(\sin \theta \partial_{\theta} \phi\right)+\frac{1}{r^{2} \sin ^{2} \theta} \partial_{\phi}^{2} \phi
$$

and drop the symmetric angular terms

$$
\nabla^{2} \phi=\frac{1}{r^{2}} \partial_{r}\left(r^{2} \partial_{r} \phi\right)=\frac{n_{0}}{\epsilon_{0}} \frac{e^{2} \phi}{k_{B} T} .
$$

This leads to an ordinary second order linear differential equation

$$
\begin{aligned}
\frac{1}{r^{2}} \partial_{r}\left(r^{2} \partial_{r} \phi\right)-\frac{n_{0}}{\epsilon_{0}} \frac{e^{2} \phi}{\mathrm{k}_{\mathrm{B}} T} & =0 \\
\frac{1}{r} \partial_{r}^{2}(r \phi)-\frac{n_{0}}{\epsilon_{0}} \frac{e^{2} \phi}{\mathrm{k}_{\mathrm{B}} T} & =0 \\
\partial_{r}^{2}(r \phi)-\frac{n_{0}}{\epsilon_{0}} \frac{e^{2} \phi}{\mathrm{k}_{\mathrm{B}} T}(r \phi) & =y^{\prime \prime}-\frac{n_{0}}{\epsilon_{0}} \frac{e^{2} \phi}{\mathrm{k}_{\mathrm{B}} T} y=0 \text { with } y=(r \phi) .
\end{aligned}
$$

The solutions of $y^{\prime \prime}+a^{2} y=0$ have the general form

$$
y(x)=\frac{c}{x} \exp (\pm a x),
$$

from which follows that

$$
\phi(r)=\frac{A}{r} \exp \left(-\frac{r}{\lambda_{D}}\right)
$$

with

$$
\begin{equation*}
\lambda_{D}^{2}=\frac{\epsilon_{0} \mathrm{k}_{\mathrm{B}} T_{e}}{n_{0} e^{2}} \tag{20}
\end{equation*}
$$

being the Debye length. The value for the constant A can be found by using the fact that at large distances $\phi(r)$ must asymptotically approach Coulomb's law and we yield the so-called Debye-Hückel potential

$$
\begin{equation*}
\phi(r)=\frac{Q}{4 \pi \epsilon_{0}} \frac{1}{r} \exp \left(-\frac{r}{\lambda_{D}}\right) \tag{21}
\end{equation*}
$$

Figure 1: Comparison between the Debye-Hückel potential (orange) of a charge immersed in a plasma and the Coulomb potential (blue) of a free charge.
(Fig. 1). A useful relation for the Debye length is

$$
\begin{equation*}
\lambda_{D}=7430 \mathrm{~m} \sqrt{\frac{T}{e \mathrm{~V}} \frac{\mathrm{~m}^{-3}}{n}} \tag{22}
\end{equation*}
$$

[^0]: *sascha.kempf@colorado.edu

